
There Are No Doubly Non-Interleaving List CRDTs

Matthew Weidner1

1Carnegie Mellon University, maweidne@andrew.cmu.edu

December 11, 2021

1 Introduction

Conflict-free Replicated Data Types (CRDTs) [13, 10] are highly available replicated data types used in
distributed key-value stores [2] and collaborative web apps [8]. A list CRDT is a CRDT representing a
list, with operations to insert and delete elements. A prominent use case for list CRDTs is collaborative
text editing: represent the text as a list of characters.

Numerous list CRDTs have been proposed, e.g., [11, 12, 14, 9]. For collaborative text editing,
though, we typically want to restrict to CRDTs that are non-interleaving : if two users type a series of
characters at the same location concurrently, then their edits should appear one after the other, not
be interleaved. See Kleppmann et al. [7] for details.

RGA (Replicated Growable Array) [11] is one list CRDT. It satisfies a reasonable non-interleaving
property for LtR insertions: if two users both type a series of characters from left to right at the same
location concurrently, then their edits will appear one after the other [6, 5]. However, RGA does not
satisfy the analogous non-interleaving property for RtL insertions [7]. Kleppmann et al. proposed a
variant of RGA and conjectured that it satisfied both LtR and RtL non-interleaving, but their CRDT
was incorrect [4].

In this paper, we show that for fairly weak definitions of LtR and RtL non-interleaving, no text
CRDT can satisfy both simultaneously. Thus at least with respect to these definitions, there are no
“doubly non-interleaving” list CRDTs. To prove this, we first show that our seemingly weak definition
of LtR non-interleaving is equivalent to a much stronger version, and any algorithm satisfying it must be
similar to RGA (Theorem 2.2)—an interesting result in its own right. We then give a counterexample
to double non-interleaving in the form of a text editing trace (Theorem 3.1).

Finally, although a doubly non-interleaving list CRDT is impossible, we show that one can get
close using a novel list CRDT we call Double RGA.

2 From Non-Interleaving to an RGA-Like Algorithm

In a text CRDT, the left origin of an element is the element directly to its left at the time of insertion.
The left origin relation gives a tree structure on elements, rooted at a special start element. We will
call this tree the left origin tree; previous works have called it a timestamped insertion tree [1] or causal
tree [3].

Assume a list CRDT has the following non-interleaving property for LtR insertions:

Definition 2.1 (LtR Non-Interleaving). Suppose list elements a and b1, . . . , bk satisfy:

• a and b1 have the same left origin.

• b1, . . . , bk form a chain of left origins, i.e., the left origin of bi is bi−1 for all i ≥ 2.

• a is concurrent to all b1, . . . , bk.

Then in the final list order, all bi are on the same side of a, i.e., either a < b1, . . . , bk or b1, . . . , bk < a.

1

mailto:maweidne@andrew.cmu.edu


In other words, if an element a is concurrent to some elements b1, . . . , bk inserted in sequence from
left to right, then a must not be interleaved in the middle of the sequence.

This is a “minimal” definition of LtR non-interleaving. At first glance, it appears weaker than
more useful user-facing notions, like a requirement that multiple concurrent LtR sequences should not
be interleaved. However, it turns out that it is already sufficient to imply something much stronger,
namely, an RGA-style algorithm:

Theorem 2.2. Assuming Definition 2.1, the final list order is a tree walk over the left origin tree in
which each element is ordered before its children, for some ordering of siblings in the tree.

Corollary 2.3. Assuming Definition 2.1, suppose list elements a1, . . . , al and b1, . . . bk are such that
a1 and b1 have the same left origin, and a1, . . . , al and b1, . . . , bk each form a chain of left origins.
Then in the final list order, either all bi appear before all aj, or vice-versa.

In particular, in a collaborative text editor using the algorithm, if two groups of users concurrently
insert LtR character sequences at the same position, then in the final list order, the two sequences are
not interleaved.

Proof. This follows easily from the tree walk. (A similar result has been formally proven by Kleppmann
et al. [6, 5]).

The rest of the section proves Theorem 2.2. First, we drop the concurrency requirement in our
non-interleaving assumption:

Lemma 2.4. Assuming Definition 2.1, suppose list elements a and b1, . . . , bk satisfy:

• a and b1 have the same left origin.

• b1, . . . , bk form a chain of left origins, i.e., the left origin of bi is bi−1 for all i ≥ 2.

Then in the final list order, all bi are on the same side of a, i.e., either a < b1, . . . , bk or b1, . . . , bk < a.

Proof. If a < b1, then a < b1, . . . , bk, since b1 < b2 < · · · < bk due to the chain of left origins.
Else b1 < a. It cannot be the case that a is causally greater than b1, since a’s left origin is to the

left of b1 but a is to the right of b1. Thus a is concurrent to or causally prior to b1. Since all bi are
causally greater than b1 (due to the chain of left origins), a is likewise concurrent to or causally prior
to all bi.

More specifically, there must be an index j (possibly 0 or k) such that a is concurrent to b1, . . . , bj
and causally prior to bj+1, . . . , bk. By the non-interleaving assumption, b1, . . . , bj < a. Next, when
bj+1 was inserted, it was aware of both bj and a, but chose bj as its left origin instead of a; thus it was
inserted to the left of a, i.e., bj+1 < a. The same holds for the rest of bj+2, . . . , bk.

Next, we extend to a tree of bi’s instead of a chain:

Lemma 2.5. Assuming Definition 2.1, suppose list elements a and b1, . . . , bk satisfy:

• a and b1 have the same left origin.

• b1, . . . , bk form a tree of left origins rooted at b1, i.e., the left origin of bi is some other bj for all
i ≥ 2.

Then in the final list order, all bi are on the same side of a, i.e., either a < b1, . . . , bk or b1, . . . , bk < a.

Proof. For any i, bi is contained in a chain of the kind described in Lemma 2.4. Thus by that lemma,
bi is on the same side of a as b1.

Finally, we prove the theorem.

Proof of Theorem 2.2. To prove that the list order is a tree walk over the left origin tree, it suffices to
prove two statements:

(1) Each element is greater than its parent in the tree.

(2) If x and y are siblings in the tree and x < y, then the entire subtree rooted at x is less than y.

Statement (1) holds because each element’s parent is its left origin, which is lesser by definition.
Statement (2) follows from Lemma 2.5 with x = b1 and y = a, since siblings in the tree have the same
left origin.

2



(start)

a

b

d f

e g c

(a) Left origin tree.

(end)

a b c

e

d

g

f

(b) Right origin tree.

Figure 1: Left and right origin trees for the example in Theorem 3.1.

3 Doubly Non-Interleaving

By swapping left origins with right in Definition 2.1, we obtain a minimal definition of RtL non-
interleaving. It implies RtL analogs of each result in the previous section. In particular, an RtL
non-interleaving algorithm’s final list order must be a tree walk over the right-origin tree in which each
element is ordered after its children, for some ordering of siblings in the tree.

Call an algorithm doubly non-interleaving if it satisfies both Definition 2.1 and its RtL analog. Such
an algorithm must be compatible with tree walks on both the left and right origin trees. Unfortunately,
this is impossible in general:

Theorem 3.1. No list CRDT is doubly non-interleaving.

Proof. We give a (rather convoluted) counterexample, explained in terms of text editing. Figure 1
shows the final left and right origin trees.

The document starts as a. Concurrently, one user types b after a (yielding ab), while another types
c after a (ac). WLOG b < c in the final document order (so merging would yield abc).

After receiving c but not b (state ac), one user types e between a and c (aec), while another types
g (agc). Both users then receive b. Note that b and c have the same right origins (the end of the
document), b < c, and e, g have right origin c; thus by RtL non-interleaving, b < e, g. So, the two users
see abec and abgc.

Next, the user with abec types d between b and e (abdec), while concurrently, the user with abgc
types f between b and g (abfgc).

Finally, they merge their changes. Note that b and e have the same left origins (a), b < e, and d, f
have left origin b; thus by LtR non-interleaving, d, f < e. Likewise, d, f < g. So, we have

a < b < (d, f) < (e, g) < c

The allowed final orders are then

abdfegc abdfgec abfdegc abfdgec

All of these orders interleave de with fg. But this is forbidden by RtL non-interleaving: the right-origin
tree contains the subtree

c

e

d

g

f

and so the final order on {d, e, f, g} must be either defg or fgde.

3.1 Double RGA

The closest we can get to double non-interleaving is to use an algorithm along the lines of:

1. Sort using a tree walk on the left origin tree.

3



2. For siblings in this tree (which are not sorted by the tree walk), sort using a tree walk on the right
origin tree restricted to those siblings (with an arbitrary order on siblings-within-siblings).

This is a novel list CRDT that I call Double RGA. The description here is a complete algorithm, but
I will elaborate on it more in future work.

Double RGA circumvents the impossibility result because it is not quite RtL non-interleaving:
when ordering nodes with different left origins, we don’t consider the right origin tree at all, and so
RtL non-interleaving can fail for them. In the example of Theorem 3.1, {d, e, f, g} don’t all have the
same left origin, so Double RGA effectively ignores the right origin tree walk for them.

Acknowledgments

I thank Martin Kleppmann for helpful discussions. This work is supported by an NDSEG Fellowship
sponsored by the US Office of Naval Research.

References

[1] Hagit Attiya, Sebastian Burckhardt, Alexey Gotsman, Adam Morrison, Hongseok Yang, and
Marek Zawirski. Specification and complexity of collaborative text editing. In Proceedings of the
2016 ACM Symposium on Principles of Distributed Computing, PODC ’16, page 259–268, New
York, NY, USA, 2016. Association for Computing Machinery.

[2] Basho. Riak datatypes, 2015. http://github.com/basho.

[3] Victor Grishchenko. Citrea and swarm: Partially ordered op logs in the browser: Implementing a
collaborative editor and an object sync library in javascript. In Proceedings of the First Workshop
on Principles and Practice of Eventual Consistency, PaPEC ’14, New York, NY, USA, 2014.
Association for Computing Machinery.

[4] Martin Kleppmann. personal communication.

[5] Martin Kleppmann, Victor B. F. Gomes, Dominic P. Mulligan, and Alastair R. Beresford. Opsets:
Sequential specifications for replicated datatypes. Archive of Formal Proofs, May 2018. https:

//isa-afp.org/entries/OpSets.html, Formal proof development.

[6] Martin Kleppmann, Victor B. F. Gomes, Dominic P. Mulligan, and Alastair R. Beresford. Opsets:
Sequential specifications for replicated datatypes (extended version), 2018.

[7] Martin Kleppmann, Victor B. F. Gomes, Dominic P. Mulligan, and Alastair R. Beresford. Inter-
leaving anomalies in collaborative text editors. In Proceedings of the 6th Workshop on Principles
and Practice of Consistency for Distributed Data, PaPoC ’19, New York, NY, USA, 2019. Asso-
ciation for Computing Machinery.

[8] Martin Kleppmann, Adam Wiggins, Peter van Hardenberg, and Mark McGranaghan. Local-first
software: You own your data, in spite of the cloud. In Proceedings of the 2019 ACM SIGPLAN
International Symposium on New Ideas, New Paradigms, and Reflections on Programming and
Software, Onward! 2019, page 154–178, New York, NY, USA, 2019. Association for Computing
Machinery.

[9] Brice Nédelec, Pascal Molli, Achour Mostefaoui, and Emmanuel Desmontils. Lseq: An adaptive
structure for sequences in distributed collaborative editing. In Proceedings of the 2013 ACM
Symposium on Document Engineering, DocEng ’13, page 37–46, New York, NY, USA, 2013.
Association for Computing Machinery.

[10] Nuno Preguiça, Carlos Baquero, and Marc Shapiro. Conflict-Free Replicated Data Types CRDTs,
pages 1–10. Springer International Publishing, Cham, 2018.

[11] Hyun-Gul Roh, Myeongjae Jeon, Jin-Soo Kim, and Joonwon Lee. Replicated abstract data types:
Building blocks for collaborative applications. Journal of Parallel and Distributed Computing,
71(3):354–368, 2011.

4

http://github.com/basho
https://isa-afp.org/entries/OpSets.html
https://isa-afp.org/entries/OpSets.html


[12] Hyun-Gul Roh, Myeongjae Jeon, Jin-Soo Kim, and Joonwon Lee. Replicated abstract data types:
Building blocks for collaborative applications. Journal of Parallel and Distributed Computing,
71(3):354–368, 2011.

[13] Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski. A comprehensive study of
Convergent and Commutative Replicated Data Types. Research Report RR-7506, Inria – Centre
Paris-Rocquencourt ; INRIA, January 2011.

[14] Stephane Weiss, Pascal Urso, and Pascal Molli. Logoot: A scalable optimistic replication algo-
rithm for collaborative editing on p2p networks. In 2009 29th IEEE International Conference on
Distributed Computing Systems, pages 404–412, 2009.

5


	Introduction
	From Non-Interleaving to an RGA-Like Algorithm
	Doubly Non-Interleaving
	Double RGA


