Proposal: Versioned Collaborative Documents

Matthew Weidner
maweidne@andrew.cmu.edu
Carnegie Mellon University
Pittsburgh, Pennsylvania, USA

Abstract

I propose a design for versioned collaborative documents. Ver-
sioned collaborative documents combine Google Docs-style
real-time collaboration with git-style fork-merge collabora-
tion. I sketch the architecture of a local-first platform for
versioned collaborative documents, outline the programming
model that programmers would use to support new docu-
ment types on top of the platform, and discuss the tools
required to implement the proposal.

1 Introduction

Local-first software [16] is a programming paradigm that
combines the user-centric benefits of traditional desktop
apps with the collaborative features of cloud-based apps.
The git distributed version control system is a prominent
example: it stores all of its data in local files, but it also
supports sharing changes with remote collaborators.

However, git has two key shortcomings. First, it does not
support real-time, conflict-free collaboration in the style of
Google Docs. Second, its histories, diffs, and merges only
understand line-based updates to plain text documents.

We propose versioned collaborative documents that over-
come these shortcomings. Our proposal has the following
features:

1. Real-time, conflict-free collaboration in the style of Google
Docs.

2. Versions, diffs, forks, and merges in the style of git.

3. The ability to support arbitrary document types with
nuanced, type-specific merge semantics: rich text docu-
ments, spreadsheets, recipes, etc.

Put another way, our proposal generalizes Upwelling [20]—
arich-text editor with features from version control systems—
to handle arbitrary document types and branching patterns.

There are two parts to our proposal. Section 2 describes
the user-facing concepts involved in versioned collaborative
documents and a platform to manage them. Section 3 de-
scribes the programming model that programmers use to
support new document types on top of the platform.

This paper is a design document; implementing it as real
software is the next step. Section 4 discusses the challenges
in realizing versioned collaborative documents and how ex-
isting tools measure up.

2 Concepts and Platform

We begin by discussing the user-facing concepts involved
in versioned collaborative documents. They are a blend of
concepts from Google Docs and git.

For each concept, we describe the user’s experience and
also sketch its underlying implementation. The implementa-
tions together form a platform for versioned collaborative
documents, consisting of independent “homeservers” and a
local-first client on each user device. Both the concepts and
the platform apply to arbitrary document types.

2.1 Documents

A document is a “unit of collaboration”: something that a
group of users can collaborate on in real time. Each document
is identified by a UUID that we call its docID. A document
is mutable: the content identified by a docID changes over
time.

When a document is created, it is assigned several proper-
ties:

Homeserver A server chosen by the document’s cre-
ator where the document lives.!

Location A URL on the homeserver that includes the
docID. Homeservers follow a consistent protocol so
that a client can connect to any document given just
its location. A typical location could have the form
https://<homeserver>/<docID>, like a hosted git
repository.

Document type A type that indicates how the docu-
ment is formatted, analogous to a file extension.

Collaborators’ clients connect to the location to read and
edit the document. The homeserver controls access to the
document, i.e., who is allowed to read and edit it. These
permissions are originally set by the document’s creator, but
the homeserver could also allow them to designate admins,
transfer ownership, etc.

Concretely, a homeserver views a document as an append-
only, totally-ordered log ofupdates. Each user input that
changes the collaborative state generates an update describ-
ing that change: insert some text, change a spreadsheet cell,
set an ingredient’s amount, etc. The document’s type deter-
mines how these updates are formatted. The user needs a
type-specific renderer to view and edit the document; we
discuss these renderers in Section 3.

'We borrow this term from Matrix [10], but use it differently: in Matrix,

each user has a single homeserver, while in our proposal, each document
does.


https://orcid.org/0000-0003-0701-7676

We later introduce optimizations that let clients avoid
working with the entire update log (Section 3.6).

Optimistic updates. The homeserver’s update log is the
single source of truth for the document. Clients may opti-
mistically apply updates to their own view of the document,
but these updates are tentative until they are confirmed by
the homeserver. In particular, a client always applies the
local user’s updates immediately, without waiting for confir-
mation from the homeserver: the document is local-first.

Updates can be logically concurrent (causally ordered),
even though the homeserver eventually assigns them a total
order. Thus we recommend using an op-based CRDT? [24]
to generate and interpret updates. For example, a rich-text
document could use the Peritext rich-text CRDT [17]. We
discuss CRDTs further in Section 4.

Homeserver vs full decentralization. Using a home-
server has several advantages over fully decentralized col-
laboration:

e In confusing situations, the homeserver makes the
final decision about which updates become part of the
update log, using established techniques for server-
based apps. For example, if one user edits the docu-
ment concurrent to losing their edit privileges, the
homeserver could choose to accept exactly the up-
dates that it received before learning of the privilege
change.

e Likewise, the homeserver decides how to handle con-
fusing situations involving permissions, e.g., two ad-
mins who ban each other concurrently.

e Many CRDTs are vulnerable to equivocation: a user
sends multiple messages with the same logical times-
tamp but different contents, putting other users in
inconsistent states [15]. The homeserver could detect
equivocation and only accept the first message with a
given logical timestamp.

Despite our use of a homeserver, decentralized collabo-
ration is still allowed: users can share optimistic updates
without using the homeserver, e.g., via peer-to-peer connec-
tions or a backup server.

For example, two users who are offline but on the same
LAN could continue collaborating. Later, the first user to
come back online pushes both users’ tentative updates to
the homeserver. Note that the homeserver may reject some
updates, e.g., if the second user lost edit access while offline;
we discuss how to handle this sitation in Section 3.5.

One disadvantage of using a homeserver is that it is a
single point of failure for a specific document. However,
users can work around a failure by creating a fork (described
later) on a different homeserver.

20r an equivalent technology like decentralized Operational Transforma-
tion [23].

Matthew Weidner

Document analogies: Google Docs document; git remote
branch.

2.2 Versions

A version of a document is a snapshot of that document’s
state at a particular point in time. A version is immutable,
and it is unambiguously and globally identified by a version
string of the form <docID>@<versionID>. Any user with
read access can request a version’s state given its version
string.

A typical version corresponds to a point in time on the
homeserver: the state resulting from the first n updates in
the homeserver’s log, for some n. In principle, one could
also expose versions that include tentative local updates,
but these would require more complicated versionIDs (e.g.,
encoding a vector clock [9, 19]).

Version analogies: git commit; Google docs version in
the version history.

2.3 Forks

At any time, a user can create a fork of a document version
that they have read access to (the fork’s base version). This
creates a new document whose initial update log is a copy
of the base version’s.

The new document has a new doclID, it is owned by the
forking user, and it has a new location chosen by the forking
user. Thus the forking user can edit and share the forked
document even if they had more limited permissions on
the original document. Forks, and edits to forks, have no
influence on the original document, which might not even
be aware of them.

Since a fork copies its base version’s update log, it starts
with the same version history as the base version. However,
a fork is not affected by newer edits to the original document.
In particular, a fork continues functioning even if the forking
user loses read access to the original document.

Users may also create forks retrospectively. For example,
if a user makes many edits to a document offline and wants
to view the diff before updating the homeserver, the user’s
client could pretend that those edits were applied to a new
fork of the original document. Likewise if some tentative
updates are rejected by the homeserver, or if the homeserver
fails.

All forks remember the docID of their root document: the
originally created document, prior to any forks.

Fork analogies: git branching; GitHub fork; Google Docs
"Make a copy" but preserving version history.

2.4 Diffs

A user can view the diff between any two versions that share
a common root document, even if they come from different
forks (i.e., they have different docIDs). A diff is unambigu-
ously identified by a diff string of the form <version string
1>..<version string 2>. This indicates the changes that



Proposal: Versioned Collaborative Documents

result from inverting the updates that are in version 1 but
not version 2, then applying the updates that are in version
2 but not version 1.

A user can also view diffs involving "pseudo-versions"
of the form <docID>@current, indicating the current, live-
updating version of docID.

Diff analogies: git diff; Google Docs "show changes" in
version history.

2.5 Merging

At any time, a version V may be merged into a different
document D that has the same root document. This merges
V’s update log into D’s, appending any updates that are
present in V’s update log but not D’s.

Merging is intended for git-style branch-and-merge work-
flows, as follows:

1. A user creates a fork F of a document D that they have
read access to.

2. That user, and possibly collaborators, edit F as a separate
document, applying some coherent set of changes.

3. When finished, they propose to merge the current version
V of F into D. Note that D may have updated indepen-
dently in the meantime.

4. An editor of D reviews the diff that would result—the diff
from D’s current state to the merged state—and suggests
changes to V.

5. Once the editor is happy with V (or a subsequent changed
version), they merge it into D.

6. Usually, the forked document F is then deleted.

Note that F’s updates are applied on top of any concurrent
updates to D. It is important that F’s updates have good
merge semantics, i.e., they roughly preserve F’s authors’
intentions despite being applied to a different state. Thus we
again recommend using an op-based CRDT to generate and
interpret updates. Ideally, this CRDT’s merge semantics are
tuned to the particular document type.

Forking and merging can form arbitrary branching pat-
terns, like in git. For example, an owner’s manual could have
a fork for the next product release, a fork on top of that for a
new product feature, and a further fork for typo fixes. These
forks would be merged back in reverse order. If the feature
is pushed back to a later release, its fork could be merged
into that release’s document, even though it was not forked
from that document.?

As another example, a creative practitioner could try out
various ideas in different forks and keep them as a “palette
of materials” [27]. If they later decide to move forward with
an idea, they can merge its fork into their main document,
even across long timescales.

3Even criss-cross merges are technically possible, but less confusing than in
git: assuming that you use an op-based CRDT, merging D; into D, always
gives the same state as merging D, into D;.

Merging analogies: git merge commit; GitHub pull re-
quest.

3 Programming Model

A user interacts with a versioned collaborative document
using a renderer specific to its document type. For example,
a renderer for rich-text documents would center around a
rich-text editor.

Any programmer can implement a new renderer, hence
support a new document type.* This section describes the
programming model for renderers.

3.1 Renderer Responsibilities

A renderer is only responsible for tasks specific to its docu-
ment type: rendering the document in a GUI, updating the
GUI in response to new updates, and generating new updates
in response to user input.

We propose that all other tasks are handled by the plat-
form’s local-first client. In particular, the platform client (not
the renderer) is responsible for Ul elements that manage Sec-
tion 2’s concepts: commands to fork and merge documents; a
display showing whether the current document is up-to-date
with its homeserver; peer-to-peer networking options; etc.

One option is to make the platform client be a comprehen-
sive app that includes the common UI elements alongside an
embedded renderer. Another option is to make the client be
a standalone app that interacts with renderers through local
files or IPC, similar to git.’> Either way, moving common tasks
into the platform client reduces renderers’ implementation
difficulty and ensures a consistent user experience across
document types.

The remaining subsections describe the specific tasks that
a renderer must implement.

3.2 Document Editing

In normal operation, the platform client provides the ren-
derer with a document’s update log. The renderer must com-
pute the current state from this log and render it in a GUL

The platform client also delivers new updates as it receives
them from local storage, the homeserver, or peer-to-peer
connections; the renderer must update its GUI to reflect each
new update.

Optimistic updates may cause the renderer to receive up-
dates in a different order than the homeserver. In particular,
the platform client will echo local updates back to the ren-
derer immediately, possibly before concurrent updates that
the homeserver orders first. The renderer must ensure that
it computes the correct state regardless: the document state
must depend only on the set of updates received, not their

4There can be multiple apps for a particular document type if they agree on
a common update format.

5In fact, one can already use git as a rudimentary client: store the update
log in a git-tracked text file with one update per line, and have the renderer
read and write that file.



delivery order (strong eventual consistency [25]). To ensure
this, we again recommend that the renderer uses an op-based
CRDT to generate and interpret updates.

When the user has edit access to a document, the renderer
must also allow editing. For each local edit, the renderer must
give the platform client a new update describing the edit. The
platform client echoes this update back to the renderer imme-
diately (to emphasize that the document is local-first), saves
it locally, and eventually distributes it to the homeserver and
possibly peer-to-peer collaborators.

3.3 Diffs

To display the diff between two versions, the platform client
provides the renderer with the updates in both versions, the
updates in version 1 but not version 2, and the updates in
version 2 but not version 1. The renderer must display these
to the user in a reasonable type-specific way.

Recall from Section 2.4 that a diff can involve live-updating
“pseudo-versions”. In this case, the platform client delivers
live updates to the renderer, which must update its GUI to
reflect each new update.

Optionally, the renderer may also allow the user to make
edits while viewing a diff. This is useful when reviewing
the diff before merging V into D: the reviewer may make
additional edits to V before approving the merge.® In par-
ticular, the renderer could allow selective undo operations,
analogous to Google Docs’ “Reject suggestion” feature.

3.4 Versions, Forks, and Merges

The renderer does not need to implement any additional
functionality to support versions, forks, and merges:

Displaying a version The platform client provides the
version’s update log as if it were a read-only docu-
ment.

Forking This does not involve document rendering.

Merging The platform client asks the renderer to dis-
play a diff between the target document’s current
state and the merged state. After merging, the plat-
form client asks the renderer to display the merged
document normally.

3.5 Rejected Updates

Recall that updates are tentative until accepted by the home-
server. This may lead to a confusing situation where the plat-
form client optimistically applies an update but later learns
that it has been rejected by the homeserver. In particular,
this can occur if:

(1) The local user lost edit access; or

(2) The local user optimistically applied peer-to-peer up-
dates from a user who lost edit access or performed
equivocation.

Technically, these edits would occur in a new fork whose starting state is
the merge of V and D.

Matthew Weidner

To avoid requiring additional functionality from the ren-
derer (namely, the ability to revert updates), we propose that
the platform client transparently switches to a new fork of
the document that matches the renderer’s state. The user
may continue editing this fork, or in case (2), they could
merge it back into the original document after checking for
vandalism. If the renderer supports selective undo opera-
tions, it could offer to undo all rejected updates during the
merge diff.

3.6 Optimization: Saved States

So far, we have defined a document solely in terms of its
update log. However, there are situations when working
with the update log alone is inefficient:

(1) When a user opens a document, it can take some time to
apply the whole update log.

(2) When a user first downloads a document, they would
prefer to see the current state quickly and download the
whole update log (hence version history) in the back-
ground, if at all.

(3) When a merge occurs, the document gets many new
updates all at once, which can take some time to process.

Situations (1) and (2) can be solved by saving the ren-
derer’s internal representation of a document, e.g., its op-
based CRDT’s state (including CRDT metadata). The ren-
derer must provide functions that save and load its internal
state. The platform client can call these to load documents
in place of applying the corresponding updates.

Situation (3) requires more complex saved states that can
be “merged”, where merging is equivalent to taking the
union of the corresponding updates. This is how state-based
CRDTs behave [24], and so the renderer can use hybrid op-
based/state-based CRDTs to optimize situations (1)—(3). We
expect to make state-based merging optional because its
benefits are modest.

4 State of Tooling

Implementing versioned collaborative documents will re-
quire a combination of techniques from version control sys-
tems, collaborative apps, and existing local-first software.
We now describe the problems that we expect to be most
difficult and how well existing tools address them.

Platform. The platform internals appears to be a “small
matter of programming”—substantial engineering effort, but
mostly straightforward. One exception is decentralized col-
laboration, which requires peer-to-peer networking, efficient
causal ordering, and handling rejected updates. Luckily, that
is optional.

Designing the platform’s client UI will be challenging. It
must expose all of the concepts from Section 2 in a way that
is understandable to ordinary users, including forking and
merging. Prior work generally trades off power and usability:



Proposal: Versioned Collaborative Documents

Google Docs suggestions are easy to use but limited; git is
powerful but technical; Upwelling is in between [20].

Renderers. The main challenge in implementing a ren-
derer is likely state management, i.e., processing and gener-
ating updates. Luckily, several libraries provide hybrid op-
based/state-based CRDTs sufficient to implement document
editing (Section 3.2) and saved states (Section 3.6):

o Yjs supports rich text, maps, and lists [13].

e Automerge supports JSON [3].

e Collabs supports various data structures and also per-
mits custom merge semantics [30].

These can be paired with a reactive UI framework, such as
React [6], Elm [7], or REScala [21], to render a live-updating
document.

Existing CRDT libraries have limited support for diffs
(Section 3.3). Yjs has undocumented support for “snapshots”
(versions) and a demo that displays the diff between two
rich-text snapshots [12]. In general, one could render a diff
by delivering the differing updates to a CRDT library and
recording the resulting local changes. However, this seems
difficult to program against, especially when live updates
are permitted. Future CRDT libraries could support native
diff views, e.g., a list CRDT that tags each element with the
versions containing it (version 1, version 2, or both).

Native diff views could also support rejecting changes. We
believe it is sufficient to perform ordinary updates that undo
a change—e.g., reject text by deleting it—but more nuanced
semantics are possible [1].” Yjs has a selective Undo/Redo
manager, but it only allows undoing in stack order, not at
arbitrary points in the history.

Schema evolution is another difficult problem. The format
of updates, and the renderer code generally, could change
over the life of a document. Cambria [18] uses “bidirectional
lenses” to address this problem, which translate updates be-
tween schemas. It remains to be seen whether the centralized
homeserver makes schema evolution easier, e.g., by enforc-
ing a linear sequence of schema upgrades (though this can
break down during forking and merging).

5 Related Work

Versioned collaborative documents synthesize ideas from
a number of sources. We have already mentioned links to
Google Docs, git, and GitHub.

Upwelling [20] is the most similar prior work. It is a pro-
totype rich-text editor that supports “drafts” (forked docu-
ments) that can be edited independently of the main docu-
ment and merged later, with explicit change tracking (diffs).

"In principle, one could undo an update by removing it from the update log
directly. In practice, this might erase metadata needed by future updates,
e.g., info used by a text CRDT to sort other characters.

Versioned collaborative documents extend Upwelling’s con-
cepts to arbitrary document types. Also, we allow more gen-
eral branching patterns: forked documents can themselves
be forked, and we do not “rebase” forks on top of their merge
target until the user requests to review a diff. Note that Up-
welling already includes what we would call a renderer for
rich-text documents, including live-updating diffs.

PushPin [28] describes a programming model for local-
first collaborative documents that inspired our renderers.
Specifically, it uses functional reactive programming to ren-
der and update CRDT documents, with each document iden-
tified by a URL. Unlike versioned collaborative documents,
PushPin does not consider forking and merging, and it uses
purely peer-to-peer networking instead of a homeserver.

Matrix-CRDT [8] and Automerge Repo [4] are document
stores for CRDT-based documents. They provide storage and
collaborative networking so that an individual collaborative
app mostly only needs to implement rendering. They do not
support forking and merging, and documents do not have a
central homeserver.

Several works explore how to manage permissions for
fully decentralized collaboration, including Matrix’s autho-
rization rules [11], DCGKA [29], and @localfirst/auth [2].
We believe that the homeserver’s centralized source of truth
makes their complex techniques unnecessary. It comes at
the cost of introducing a single point of failure, which we
mitigate using forks instead of full decentralization.

Irmin [5] and Pijul [32] are distributed version control
systems that involve CRDTs. Irmin implements a key-value
store that one can build CRDTs on top of [14, 26], while Pijul
implements a specific CRDT for line-based text files. Unlike
versioned collaborative documents, these systems do not
support arbitrary CRDT updates, and we are not aware of
real-time collaboration support.

6 Future Work

For future work, we would like to refine this proposal and
eventually implement it. In particular, we aim to implement
the proposed local-first platform and provide tools for writ-
ing renderers. These will hopefully let non-expert program-
mers create novel local-first apps.

Besides the implementation challenges from Section 4,
future work could investigate extensions to this proposal:

Commit messages. A user may wish to provide a “commit
message” summarizing a group of updates and its rationale
[22]. The platform should allow adding a commit message
to a group of updates (e.g., a merge) and display these mes-
sages in a history view. The renderer could also display these
messages in a “git blame” view.

History hiding. Versioned collaborative documents re-
tain their full version history. Users may instead wish to hide
deleted content from future collaborators, or they may need



to delete leaked secrets from the history. In particular, when
merging, users may wish to perform a “squash merge” that
omits irrelevant updates.

Cherry-picking. A user may wish to merge only a cherry-
picked subset of changes from a fork—e.g., all changes to
a specific paragraph. The platform can implement cherry-
picking by appending only the desired updates to the log,
but it seems challenging to design user interfaces and CRDTs
that can support this.

Yu, Oster, and Ignat describe a CRDT-based Emacs exten-
sion with a similar feature [31].

Beyond CRDTs. Op-based CRDTs are designed for a fully
decentralized setting, but our documents have a centralized
source of truth on the homeserver. Can we leverage this
to allow merge semantics beyond CRDTs? For example, no
existing CRDT supports a find-and-replace-text operation,
but it seems possible to perform such an operation in a fork
and then run it again just after merging.

Subdocuments. Some documents contain sections with
different permissions, e.g., body text vs comments. We can
model each section as a separate document with its own
permissions, but forking and merging these subdocuments
together seems complicated.

Partially decentralized permissions. The homeserver
enforces permissions in a fully centralized fashion. We could
instead let clients enforce basic permissions on their own in
a decentralized fashion, while still using the homeserver as
a fallback in confusing situations.

Acknowledgments

I thank Florian Jacob, Gregory Schare, and the PLF workshop
reviewers for providing feedback on drafts of this proposal.
I was supported by an NDSEG Fellowship sponsored by the
US Office of Naval Research.

References

[1] Eric Brattli and Weihai Yu. 2021. Supporting Undo and Redo for Repli-
cated Registers in Collaborative Applications. In Cooperative Design,
Visualization, and Engineering, Yuhua Luo (Ed.). Springer International
Publishing, Cham, 195-205.

[2] Herb Caudill. 2023. @localfirst/auth. GitHub repository.
//github.com/local-first-web/auth

[3] Automerge contributors. 2023. Automerge. GitHub repository. https:
//github.com/automerge/automerge

[4] Automerge contributors. 2023. Automerge Repo. GitHub repository.
https://github.com/automerge/automerge-repo

[5] Irmin contributors. 2023. Irmin. GitHub repository. https://github.
com/mirage/irmin

[6] React contributors. 2023. React. GitHub repository. https://github.
com/facebook/react

[7] Evan Czaplicki. 2021. Elm. https://elm-lang.org/

[8] Yousef El-Dardiry. 2023. Matrix CRDT. GitHub repository. https:
//github.com/YousefED/Matrix-CRDT

https:

(9]

[10]
[11]

[12]

[13]
[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

Matthew Weidner

Colin J. Fidge. 1988. Timestamps in message-passing systems that pre-
serve the partial ordering. Proceedings of the 11th Australian Computer
Science Conference 10, 1 (1988), 56—66.

Matrix.org Foundation. 2023. Matrix. https://matrix.org/

Florian Jacob, Luca Becker, Jan Grashoéfer, and Hannes Hartenstein.
2020. Matrix Decomposition: Analysis of an Access Control Approach
on Transaction-Based DAGs without Finality. In Proceedings of the 25th
ACM Symposium on Access Control Models and Technologies (Barcelona,
Spain) (SACMAT °20). Association for Computing Machinery, New
York, NY, USA, 81-92. https://doi.org/10.1145/3381991.3395399
Kevin Jahns. 2022. ProseMirror + Versions Demo. GitHub repository.
https://github.com/yjs/yjs-demos/tree/main/prosemirror-versions
Kevin Jahns. 2023. Yjs. GitHub repository. https://github.com/yjs/yjs
Gowtham Kaki, Swarn Priya, KC Sivaramakrishnan, and Suresh Ja-
gannathan. 2019. Mergeable Replicated Data Types. Proc. ACM Pro-
gram. Lang. 3, OOPSLA, Article 154 (Oct. 2019), 29 pages. https:
//doi.org/10.1145/3360580

Martin Kleppmann and Heidi Howard. 2020. Byzantine Eventual
Consistency and the Fundamental Limits of Peer-to-Peer Databases.
CoRR abs/2012.00472 (2020). arXiv:2012.00472 https://arxiv.org/abs/
2012.00472

Martin Kleppmann, Adam Wiggins, Peter van Hardenberg, and Mark
McGranaghan. 2019. Local-First Software: You Own Your Data, in
Spite of the Cloud. In Proceedings of the 2019 ACM SIGPLAN Inter-
national Symposium on New Ideas, New Paradigms, and Reflections
on Programming and Software (Athens, Greece) (Onward! 2019). As-
sociation for Computing Machinery, New York, NY, USA, 154-178.
https://doi.org/10.1145/3359591.3359737

Geoffrey Litt, Sarah Lim, Martin Kleppmann, and Peter van Hard-
enberg. 2022. Peritext: A CRDT for Collaborative Rich Text Editing.
Proc. ACM Hum.-Comput. Interact. 6, CSCW2, Article 531 (nov 2022),
36 pages. https://doi.org/10.1145/3555644

Geoffrey Litt, Peter van Hardenberg, and Orion Henry. 2020. Project
Cambria: Translate your data with lenses. https://www.inkandswitch.
com/cambria/

Friedemann Mattern. 1989. Virtual Time and Global States of
Distributed Systems. In Parallel and Distributed Algorithms. North-
Holland, 215-226.

Karissa Rae McKelvey, Scott Jensen, Eileen Wagner, Blaine Cook, and
Martin Kleppmann. 2023. Upwelling: Combining real-time collabo-
ration with version control for writers. https://www.inkandswitch.
com/upwelling/

Ragnar Mogk, Lars Baumgartner, Guido Salvaneschi, Bernd Freisleben,
and Mira Mezini. 2018. Fault-tolerant Distributed Reactive Program-
ming. In 32nd European Conference on Object-Oriented Programming
(ECOOP 2018) (Leibniz International Proceedings in Informatics (LIPIcs),
Vol. 109), Todd Millstein (Ed.). Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik, Dagstuhl, Germany, 1:1-1:26. https://doi.org/10.4230/
LIPlcs.ECOOP.2018.1

So Yeon Park and Sang Won Lee. 2023. Why “why”? The Importance
of Communicating Rationales for Edits in Collaborative Writing. In
Proceedings of the 2023 CHI Conference on Human Factors in Computing
Systems (Hamburg, Germany) (CHI ’23). Association for Computing
Machinery, New York, NY, USA, Article 616, 25 pages. https://doi.
org/10.1145/3544548.3581345

Matthias Ressel, Doris Nitsche-Ruhland, and Rul Gunzenhiuser. 1996.
An Integrating, Transformation-Oriented Approach to Concurrency
Control and Undo in Group Editors. In Proceedings of the 1996 ACM
Conference on Computer Supported Cooperative Work (Boston, Mas-
sachusetts, USA) (CSCW °96). Association for Computing Machinery,
New York, NY, USA, 288-297. https://doi.org/10.1145/240080.240305


https://github.com/local-first-web/auth
https://github.com/local-first-web/auth
https://github.com/automerge/automerge
https://github.com/automerge/automerge
https://github.com/automerge/automerge-repo
https://github.com/mirage/irmin
https://github.com/mirage/irmin
https://github.com/facebook/react
https://github.com/facebook/react
https://elm-lang.org/
https://github.com/YousefED/Matrix-CRDT
https://github.com/YousefED/Matrix-CRDT
https://matrix.org/
https://doi.org/10.1145/3381991.3395399
https://github.com/yjs/yjs-demos/tree/main/prosemirror-versions
https://github.com/yjs/yjs
https://doi.org/10.1145/3360580
https://doi.org/10.1145/3360580
https://arxiv.org/abs/2012.00472
https://arxiv.org/abs/2012.00472
https://arxiv.org/abs/2012.00472
https://doi.org/10.1145/3359591.3359737
https://doi.org/10.1145/3555644
https://www.inkandswitch.com/cambria/
https://www.inkandswitch.com/cambria/
https://www.inkandswitch.com/upwelling/
https://www.inkandswitch.com/upwelling/
https://doi.org/10.4230/LIPIcs.ECOOP.2018.1
https://doi.org/10.4230/LIPIcs.ECOOP.2018.1
https://doi.org/10.1145/3544548.3581345
https://doi.org/10.1145/3544548.3581345
https://doi.org/10.1145/240080.240305

Proposal: Versioned Collaborative Documents

[24]

[25]

[26]

[27]

(28]

Marc Shapiro, Nuno Preguica, Carlos Baquero, and Marek Zawirski.
2011. A comprehensive study of Convergent and Commutative Repli-
cated Data Types. Research Report RR-7506. Inria — Centre Paris-
Rocquencourt ; INRIA. 50 pages. https://hal.inria.fr/inria-00555588
Marc Shapiro, Nuno Preguica, Carlos Baquero, and Marek Zawirski.
2011. Conflict-Free Replicated Data Types. In Stabilization, Safety,
and Security of Distributed Systems, Xavier Défago, Franck Petit, and
Vincent Villain (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,
386-400.

Vimala Soundarapandian, Adharsh Kamath, Kartik Nagar, and KC
Sivaramakrishnan. 2022. Certified Mergeable Replicated Data Types.
In Proceedings of the 43rd ACM SIGPLAN International Conference on
Programming Language Design and Implementation (San Diego, CA,
USA) (PLDI 2022). Association for Computing Machinery, New York,
NY, USA, 332-347. https://doi.org/10.1145/3519939.3523735

Sarah Sterman, Molly Jane Nicholas, and Eric Paulos. 2022. To-
wards Creative Version Control. Proc. ACM Hum.-Comput. Interact.
6, CSCW2, Article 336 (nov 2022), 25 pages. https://doi.org/10.1145/
3555756

Peter van Hardenberg and Martin Kleppmann. 2020. PushPin: Towards
Production-Quality Peer-to-Peer Collaboration. In Proceedings of the

[29]

[30]

[31]

[32]

7th Workshop on Principles and Practice of Consistency for Distributed
Data (Heraklion, Greece) (PaPoC ’20). Association for Computing
Machinery, New York, NY, USA, Article 10, 10 pages. https://doi.org/
10.1145/3380787.3393683

Matthew Weidner, Martin Kleppmann, Daniel Hugenroth, and Alas-
tair R. Beresford. 2021. Key Agreement for Decentralized Secure
Group Messaging with Strong Security Guarantees. In Proceedings
of the 2021 ACM SIGSAC Conference on Computer and Communica-
tions Security (Virtual Event, Republic of Korea) (CCS °21). Associ-
ation for Computing Machinery, New York, NY, USA, 2024-2045.
https://doi.org/10.1145/3460120.3484542

Matthew Weidner, Heather Miller, Huairui Qi, Maxime Kjaer, Ria
Pradeep, Ignacio Maronna, Benito Geordie, and Yicheng Zhang. 2023.
Collabs. GitHub repository. https://github.com/composablesys/
collabs

Weihai Yu, Gérald Oster, and Claudia-Lavinia Ignat. 2017. Handling
Disturbance and Awareness of Concurrent Updates in a Collaborative
Editor. In Cooperative Design, Visualization, and Engineering, Yuhua
Luo (Ed.). Springer International Publishing, Cham, 39-47.
Pierre Etienne Meunier and Florent Becker. 2023. Pijul.
//pijul.org/

https:


https://hal.inria.fr/inria-00555588
https://doi.org/10.1145/3519939.3523735
https://doi.org/10.1145/3555756
https://doi.org/10.1145/3555756
https://doi.org/10.1145/3380787.3393683
https://doi.org/10.1145/3380787.3393683
https://doi.org/10.1145/3460120.3484542
https://github.com/composablesys/collabs
https://github.com/composablesys/collabs
https://pijul.org/
https://pijul.org/

	Abstract
	1 Introduction
	2 Concepts and Platform
	2.1 Documents
	2.2 Versions
	2.3 Forks
	2.4 Diffs
	2.5 Merging

	3 Programming Model
	3.1 Renderer Responsibilities
	3.2 Document Editing
	3.3 Diffs
	3.4 Versions, Forks, and Merges
	3.5 Rejected Updates
	3.6 Optimization: Saved States

	4 State of Tooling
	5 Related Work
	6 Future Work
	Acknowledgments
	References

